J. M. Shaw, A. Oranratnachai, and A. O. Trounson, Fundamental cryobiology of mammalian, oocytes and ovarian tissue, Theriogenology, vol.53, issue.1, pp.59-72, 2000.

R. M. Pereira and C. C. Marques, Animal oocyte and embryo cryopreservation, Cell and Tissue Banking, vol.9, issue.4, pp.267-277, 2008.

M. Kasai and . Vitrificatio, Refined strategy for the cryopreservation of mammalian embryos, Journal of Mammalian Ova Research, vol.14, pp.17-28, 1997.

G. M. Fahy, The relevance of cryoprotectant "toxicity" to cryobiology, Cryobiology

G. M. Fahy, T. H. Lilley, H. Linsdell, M. Douglas, and H. T. Meryman, Cryoprotectant toxicity and cryoprotectant toxicity reduction: In search of molecular mechanisms, Cryobiology [Internet], vol.27, issue.3, pp.247-268, 1990.

G. M. Fahy, Cryoprotectant toxicity neutralization, Cryobiology

, , vol.60

Y. Nakamura, R. Obata, N. Okuyama, N. Aono, T. Hashimoto et al., , vol.3, pp.311-313

J. M. Davis, S. D. Rowley, H. G. Braine, S. Piantadosi, and G. W. Santos, Clinical toxicity of cryopreserved bone marrow graft infusion, Blood [Internet], 1990.

M. Iwatani, K. Ikegami, Y. Kremenska, N. Hattori, S. Tanaka et al., Dimethyl sulfoxide has an impact on epigenetic profile in mouse embryoid body, Stem Cells [Internet], vol.24, issue.11, pp.2549-2556, 2006.

S. Thirumala, W. S. Goebel, and E. J. Woods, Clinical grade adult stem cell banking, Organogenesis, vol.5, issue.3, pp.143-154, 2009.

D. Bégin, J. Lavoué, and M. Gérin, La substitution des solvants par le diméthylsulfoxyde, Free Radical Biology & Medicine, vol.52, p.80, 2002.

J. Ali and J. N. Shelton, Vitrification of preimplantation stages of mouse embryos, Journal of Reproduction and Fertility, vol.98, pp.459-465, 1993.

P. Windrum and T. Morris, Severe neurotoxicity because of dimethyl sulphoxide following peripheral blood stem cell transplantation. Bone Marrow Transplantation, vol.31, pp.315-315, 2003.

K. Moore and A. Q. Bonilla, Cryopreservation of mammalian embryos: The state of the art, Annual Review of Biomedical Sciences, vol.8, pp.19-32, 2006.

J. Juang and H. Liu, The effect of DMSO on natural DNA conformation in enhancing transcription, Biochemical and Biophysical Research Communications [Internet], vol.146, issue.3, pp.1458-1464, 1987.

A. A. Rayos, Y. Takahashi, M. Hishinuma, and H. Kanagawa, i?dbfrom=pubmed&id=8182579&re tmode=ref&cmd=prlinks%5Cnpape rs2://publication/uuid/FA464C5D-8EA3-451B-BBB7-D41585FF6058

L. L. Kuleshova, J. M. Shaw, and A. O. Trounson, Studies on replacing most of the penetrating cryoprotectant by polymers for embryo cryopreservation, Cryobiology, vol.43, issue.1, pp.21-31, 2002.

L. L. Kuleshova and J. M. Shaw, Reproduction, vol.15, issue.12, pp.2604-2609, 2000.

J. Liebermann, J. Dietl, P. Vanderzwalmen, and M. J. Tucker, Recent developments in human oocyte, embryo and blastocyst vitrification: Where are we now? Reproductive BioMedicine Online, vol.7, pp.62084-62090, 2003.

C. E. Argyle, J. C. Harper, and M. C. Davies, Oocyte cryopreservation: Where are we now? Human Reproduction Update, vol.22, pp.440-449, 2016.

J. Liu, Development of a Novel Cryoconservation Method for Mammalian Oocytes, 2009.

S. Yoshida, Chemical and biophysical changes in the plasma membrane during cold acclimation of mulberry bark cells (Morus bombycis Koidz

, Plant Physiology [Internet], vol.76, issue.1, 1984.

M. F. Thomashow, PLANT COLD ACCLIMATION: Freezing tolerance genes and regulatory mechanisms

, Annual Review of Plant Physiology and Plant Molecular Biology, vol.50, issue.1, pp.571-599, 1999.

K. Nakamura, T. Hatakeyama, and H. Hatakeyama, Studies on bound water of cellulose by differential scanning calorimetry, Textile Research Journal, vol.51, issue.9, pp.607-613, 1981.

T. Hatakeyema, A. Yamauchi, and H. Hatakeyema, Studies on bound water in poly(vinyl alcohol). Hydrogel by DSC and FT-NMR, European Polymer Journal, vol.20, issue.1, pp.61-64, 1984.

J. A. Ratto, T. Hatakeyama, and R. B. Blumstein, Differential scanning calorimetry investigation of phase transitions in water/chitosan systems, Polymer, vol.36, issue.15, pp.2915-2919, 1995.

T. Hatakeyama and H. Hatakeyama, Heat capacity and nuclear magnetic relaxation times of non-freezing water restrained by polysaccharides, revisited, Journal of Biomaterials Science, vol.28, pp.10-12, 2017.

H. Hatakeyama, T. Onishi, T. Endo, and T. Hatakeyama, Gelation of chemically cross-linked methylcellulose studied by DSC and AFM. Carbohydrate Polymers, vol.69, pp.792-798, 2007.

M. Grossutti and J. R. Dutcher, Correlation between chain architecture and hydration water structure in polysaccharides, Biomacromolecules, vol.17, issue.3, pp.1198-1204, 2016.

C. Branca, S. Magazù, G. Maisano, F. Migliardo, P. Migliardo et al., ?,?-trehalose/water solutions. 5. Hydration and viscosity in dilute and semidilute disaccharide solutions, The Journal of Physical Chemistry B, vol.105, issue.41, pp.10140-10145, 2001.

M. R. Kasaai, Calculation of MarkHouwink-Sakurada (MHS) equation

, The Use of Chitooligosaccharides in Cryopreservation: Discussion of Concept and First? DOI

T. Hatakeyama, M. Iijima, and H. Hatakeyama, Role of bound water on structural change of water insoluble polysaccharides, Food Hydrocolloids [Internet], vol.53, 2016.

G. B. Quan, Y. Han, M. X. Liu, L. Fang, W. Du et al., Addition of glucose, Cryobiology

K. Watanabe, T. Yaguchi, D. Yang, T. Kanno, K. Nagai et al., Beneficial effect of intracellular free high-mannose oligosaccharides on cryopreservation of mammalian cells and proteins, Cryobiology, vol.53, issue.3, pp.330-335, 2006.

J. Liu, C. Tanrikut, D. L. Wright, G. Y. Lee, M. Toner et al., Cryopreservation of human spermatozoa with minimal nonpermeable cryoprotectant, Cryobiology [Internet], vol.73, issue.2, pp.162-167, 2016.

S. Iqbal, S. Naz, H. Ahmed, and S. Andrabi, Cryoprotectant effect of trehalose in extender on postthaw quality and in vivo fertility of water buffalo (Bubalus bubalis) bull spermatozoa, Andrologia, vol.50, issue.1, pp.1-6, 2018.

Z. Zhu, X. Fan, Y. Pan, Y. Lu, and W. Zeng, Trehalose improves rabbit sperm quality during cryopreservation, Cryobiology, vol.75, 2017.

C. C. Pérez-marín, F. D. Requena, A. Arando, S. Ortiz-villalón, F. Requena et al., Effect of trehalose-and sucrose-based extenders on equine sperm quality after vitrification: Preliminary results, Cryobiology [Internet], vol.80, pp.62-69, 2018.

H. Huang, G. Zhao, Y. Zhang, J. Xu, T. L. Toth et al., Predehydration and ice seeding in the presence of trehalose enable cell cryopreservation, ACS Biomaterials Science & Engineering, vol.3, issue.8, pp.1758-1768, 2017.

K. Somjit, Y. Ruttanapornwareesakul, K. Hara, and Y. Nozaki, The cryoprotectant effect of shrimp chitin and shrimp chitin hydrolysate on denaturation and unfrozen water of lizardfish surimi during frozen storage, Food Research International, vol.38, issue.4, pp.345-355, 2005.

G. W. Shu, M. Hu, T. Qin, H. Chen, and Q. Ma, Effect of fructo-oligosaccharide, isomalto-oligosaccharide, inulin and xylo-oligosaccharide on survival of B. Bifidum during freeze-drying, Advanced Materials Research, vol.382, p.454, 2011.

Y. Miyamoto, S. Suzuki, and K. Nomura, Cell Transplantation [Internet], vol.15, issue.10, pp.911-919, 2006.

C. Stushnoff, M. J. Seufferheld, and T. Creegan, Oligosaccharides as endogenous cryoprotectants in woody plants

M. A. Boston,

, , pp.301-309, 1997.

J. H. Auh, H. G. Lee, J. W. Kim, J. C. Kim, H. S. Yoon et al., Highly concentrated branched oligosaccharides as cryoprotectant for surimi, Journal of Food Science, vol.64, issue.3, 1999.

E. G. Aisen, V. H. Medina, and A. Venturino, Cryopreservation and post-thawed fertility of ram semen frozen in different trehalose concentrations, Theriogenology, 2002.

E. Aisen, M. Quintana, V. Medina, H. Morello, and A. Venturino, Ultramicroscopic and biochemical changes in ram spermatozoa cryopreserved with trehalose-based hypertonic extenders, Cryobiology, vol.50, issue.3, pp.239-249, 2005.

E. Aboagla, Trehalose-enhanced fluidity of the goat sperm membrane and its protection during freezing, Biology of Reproduction, vol.69, issue.4, 2003.

M. Kasai, J. H. Komi, A. Takakamo, H. Tsudera, T. Sakurai et al., A simple method for mouse embryo cryopreservation in a low toxicity vitrification solution, without appreciable loss of viability, Journal of Reproduction and Fertility

W. F. Rall and M. J. Wood, High in vitro and in vivo survival of day 3 mouse embryos vitrified or frozen in a nontoxic solution of glycerol and albumin, Journal of Reproduction and Fertility, vol.101, pp.681-688, 1994.

J. M. Shaw, L. L. Kuleshova, D. R. Macfarlane, and A. O. Trounson, Vitrification properties of solutions of ethylene glycol in saline containing PVP, Ficoll, or dextran, Cryobiology, vol.35, issue.3, pp.219-229, 1997.

Y. Wang, O. Okitsu, X. M. Zhao, Y. Sun, W. Di et al., The effect of minimal concentration of ethylene glycol (EG) combined with polyvinylpyrrolidone (PVP) on mouse oocyte survival and subsequent embryonic development following vitrification, Journal of Assisted Reproduction and Genetics, vol.31, issue.1, pp.55-63, 2014.

E. E. Wallach, S. Friedler, L. C. Giudice, and E. J. Lamb, Cryopreservation of embryos and ova, Fertility and Sterility [Internet], vol.49, issue.5, pp.743-764, 1988.

B. Balaban, B. Urman, B. Ata, A. Isiklar, M. G. Larman et al., A randomized controlled study of human day 3 embryo cryopreservation by slow freezing or vitrification: Vitrification is associated with higher survival

, The Use of Chitooligosaccharides in Cryopreservation: Discussion of Concept and First? DOI

, Human Reproduction, 2008.

D. K. Gardner, M. Lane, J. Stevens, and W. B. Schoolcraft, Changing the start and Sterility, vol.79, pp.407-410, 2003.

W. F. Rall, M. J. Wood, C. Kirby, and D. G. Whittingham, Development of mouse embryos cryopreserved by vitrification, Journal of Reproduction and Fertility [Internet], vol.80, issue.2, pp.499-504, 1987.

N. K. Khurana and H. Niemann, Effects of

J. P. Barbas and R. D. Mascarenhas, Cryopreservation of domestic animal sperm cells, Cell and Tissue Banking, vol.10, pp.49-62, 2009.

H. W. Gil, T. H. Lee, and I. Park, Effects of cryoprotectants and diluents on the cryopreservation of spermatozoa from far eastern catfish, Silurus asotus. Development & Reproduction [Internet, vol.21, pp.71-91, 2017.

W. F. Rall and G. M. Fahy, Cryopreservation of mouse embryos at À196 degrees C by vitrification, Nature, vol.313, pp.573-575, 1985.

A. T. Palasz and R. J. Mapletoft, Cryopreservation of mammalian embryos and oocytes: Recent advances, Biotechnology Advances, vol.14, issue.2, pp.127-149, 1996.

J. Ali and J. N. Shelton, Design of vitrification solutions for the cryopreservation of embryos, Journal of Reproduction and Fertility, vol.99, issue.2, pp.471-477, 1993.

M. Kasai, Cryopreservation of mammalian embryos, Molecular Biotechnology, vol.7, pp.173-179, 1997.

M. C. Gómez, E. Pope, R. Harris, S. Mikota, and B. L. Dresser, Development of in vitro matured, in vitro fertilized domestic cat embryos following cryopreservation, culture and transfer, Theriogenology, vol.60, issue.2, pp.239-251, 2003.

A. Eroglu, J. A. Lawitts, M. Toner, and T. L. Toth, Quantitative microinjection of trehalose into mouse oocytes and zygotes, and its effect on development, Cryobiology, vol.46, issue.2, pp.121-134, 2003.

M. Kasai and T. Mukaida, Cryopreservation of animal and human embryos by vitrification. Reproductive BioMedicine Online, 2004.

A. Eroglu, S. E. Bailey, M. Toner, and T. L. Toth, Successful cryopreservation of mouse oocytes by using low concentrations of trehalose and dimethylsulfoxide1, Biology of Reproduction, vol.80, issue.1, pp.70-78, 2009.

K. T. Krag, I. Koehler, and R. W. Wright, Trehalose-A nonpermeable cryoprotectant for direct freezing of early stage murine embryos, Theriogenology [Internet], vol.23, issue.1, p.200, 1985.

B. T. Storey, E. E. Noiles, and K. A. Thompson, Comparison of glycerol, other polyols, trehalose, and raffinose to provide a defined cryoprotectant medium for mouse sperm

S. Saha, T. Otoi, M. Takagi, A. Boediono, C. Sumantri et al., Cryobiology, vol.33, issue.3, pp.291-299, 1996.

C. F. Wu, H. C. Tsung, W. J. Zhang, Y. Wang, J. H. Lu et al., Improved cryopreservation of human embryonic stem cells with trehalose. Reproductive BioMedicine Online, vol.11, pp.61692-61698, 2005.

L. K. Mcginnis, L. Zhu, J. A. Lawitts, S. Bhowmick, M. Toner et al., Mouse sperm desiccated and stored in trehalose medium without freezing, Biology of Reproduction

A. Eroglu, M. Toner, and T. L. Toth,

S. S. Buchanan, S. A. Gross, J. P. Acker, M. Toner, J. F. Carpenter et al.,

T. E. Honadel and G. J. Killian, Cryopreservation of murine embryos with trehalose and glycerol, Cryobiology, vol.25, issue.4, pp.331-337, 1988.

S. Judycka, B. I. Cejko, K. Dryl, S. Dobosz, J. Grudniewska et al., Oncorhynchus mykiss) sperm freezability and post-thaw motility, Aquaculture [Internet], vol.465, pp.303-310, 2016.

D. Castro, M. Cortell, C. Vicente, and J. S. , Dextran vitrification media prevents mucin coat and zona pellucida damage in rabbit embryo, Theriogenology [Internet], vol.74, issue.9, 2010.

J. Dumoulin, J. M. Bergers-janssen, M. Pieters, M. E. Enginsu, J. Geraedts et al., The protective effects of polymers in the cryopreservation of human and mouse zonae pellucidae and embryos, Fertility and Sterility [Internet], vol.62, issue.4, p.57006, 1994.

H. Sieme, H. Oldenhof, and W. Wolkers, Sperm membrane behaviour during cooling and cryopreservation. Reproduction in Domestic Animals, vol.50, pp.20-26, 2015.

H. T. Meryman, Review of biological freezing, pp.1-114, 1966.

M. J. Ashwood-smith and C. Warby, Studies on the molecular weight and cryoprotective properties of polyvinylpyrrolidone and dextran with bacteria and erythrocytes, Cryobiology, vol.8, issue.5, pp.453-464, 1971.

T. L. Bailey, C. Stubbs, K. Murray, R. Tomás, L. Otten et al., Synthetically scalable poly(ampholyte) which dramatically enhances cellular cryopreservation, Biomacromolecules [Internet], vol.20, issue.8, pp.3104-3114, 2019.

R. C. Prickett, J. Elliott, and L. E. Mcgann, Application of the osmotic

, The Use of Chitooligosaccharides in Cryopreservation: Discussion of Concept and First? DOI

, cryobiology. Cryobiology, vol.60, 2010.

F. Fonseca, J. Meneghel, S. Cenard, S. Passot, and G. J. Morris, Determination of Intracellular vitrification temperatures for unicellular micro organisms under conditions relevant for cryopreservation, PLoS One
URL : https://hal.archives-ouvertes.fr/hal-01565156

, , vol.11, pp.1-19

R. K. Browne, J. Clulow, and M. Mahony, The effect of saccharides on the postthaw recovery of cane toad (Bufo marinus) spermatozoa, Cryo Letters [Internet], vol.23, issue.2, pp.121-128, 2002.

H. Huang, J. K. Choi, W. Rao, S. Zhao, P. Agarwal et al., Alginate hydrogel microencapsulation inhibits devitrification and enables large-volume low-CPA cell vitrification, Advanced Functional Materials, vol.25, issue.44, pp.6839-6850, 2015.

J. Meneghel, S. Passot, S. Cenard, M. Réfrégiers, F. Jamme et al., Subcellular membrane fluidity of Lactobacillus delbrueckii subsp. bulgaricus under cold and osmotic stress, Applied Microbiology and Biotechnology, vol.101, issue.18, pp.6907-6917, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01634459

B. Kent, T. Hunt, T. A. Darwish, T. Hauß, C. J. Garvey et al., Localization of trehalose in partially hydrated DOPC bilayers: Insights into cryoprotective mechanisms, Journal of The Royal Society Interface [Internet], vol.11, issue.95, 2014.

R. C. Deller, M. Vatish, D. A. Mitchell, and M. I. Gibson, Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing, Nature Communications [Internet], vol.5, issue.1, p.3244, 2014.

G. J. Morris, E. Acton, and S. Avery, A novel approach to sperm cryopreservation, Human Reproduction [Internet], vol.14, issue.4, pp.1013-1021, 1999.

F. Fonseca, S. Passot, P. Lieben, and M. Marin, Collapse temperature of bacterial suspensions: The effect of cell type and concentration, Cryo-Letters, vol.25, issue.6, pp.425-434, 2004.

J. T. Mika, G. Van-den-bogaart, L. Veenhoff, V. Krasnikov, and B. Poolman, Molecular sieving properties of the cytoplasm of Escherichia coli and consequences of osmotic stress, Molecular Microbiology, vol.77, issue.1, pp.200-207, 2010.

E. H. Zhou, X. Trepat, C. Y. Park, G. Lenormand, M. N. Oliver et al., Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition, Proceedings of the National Academy of Sciences, vol.106, 2009.

M. A. Mourão, J. B. Hakim, and S. Schnell, Connecting the dots: The effects of macromolecular crowding on cell physiology, Biophysical Journal, vol.107, issue.12, pp.2761-2766, 2014.

J. Wolfe and G. Bryant, Cellular cryobiology: Thermodynamic and mechanical effects, International Journal of Refrigeration, vol.24, pp.438-450, 2001.

H. T. Meryman, The exceeding of a minimum tolerable cell volume in hypertonic suspension as a cause of freezing injury, The Frozen Cell

L. Gr, , pp.51-67, 1970.

P. Mazur, I. L. Pinn, and F. W. Kleinhans,

, Reproduction [Internet], vol.79, issue.4, 2008.

E. Generalic, Acetyl glucosamine

C. Glossary and . Dictionary, , 2017.

W. Xia, P. Liu, J. Zhang, and J. Chen, Biological activities of chitosan and chitooligosaccharides, Food Hydrocolloids [Internet], vol.25, issue.2, 2011.

S. K. Kim and N. Rajapakse, Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review, Carbohydrate Polymers, 2005.

B. B. Aam, E. B. Heggset, A. L. Norberg, M. Sørlie, K. M. Vårum et al., Production of chitooligosaccharides and their potential applications in medicine, Marine Drugs, vol.8, issue.5, pp.1482-1517, 2010.

A. Y. Escobedo-lozano, A. Domard, C. A. Velázquez, and F. M. Goycoolea, Argüelles-Monal WM. Physical properties and antibacterial activity of chitosan/acemannan mixed systems, Carbohydrate Polymers [Internet], vol.115, pp.707-714, 2015.

M. G. Peter, Applications and environmental aspects of chitin and chitosan, Journal of Macromolecular Science, Part A [Internet], vol.32, issue.4, 1995.

K. F. Adekunle, Bio-based polymers for technical applications: A reviewPart 2. Open Journal of Polymer Chemistry, pp.95-101

M. Teixeira, S. Buff, H. Desnos, C. Loiseau, P. Bruyère et al., Ice nucleating agents allow embryo freezing without manual seeding, Theriogenology, 2017.

A. Moussa, A. Crépet, C. Ladavière, and S. Trombotto, Reducing-end "clickable" functionalizations of chitosan oligomers for the synthesis of chitosan-based diblock copolymers. Carbohydrate Polymers, vol.219, pp.387-394, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02293442

J. Becerra, G. Sudre, I. Royaud, R. Montserret, B. Verrier et al., Tuning the hydrophilic/hydrophobic balance to control the structure of chitosan films and their protein release behavior, AAPS PharmSciTech, vol.18, issue.4, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01648791

P. P. Dhawade and R. N. Jagtap, Characterization of the glass transition temperature of chitosan and its oligomers by temperature modulated differential scanning calorimetry, Advances in Applied Science Research, vol.3, pp.1372-1382, 2012.

L. Payet, Viscoelasticite et structure de gels à base de chitosane -relations avec les propriétés diffusionnelles de macromolécules dans ces biogels. Solutions. Université, 2005.

, The Use of Chitooligosaccharides in Cryopreservation: Discussion of Concept and First? DOI

S. C. Barros, A. A. Da-silva, D. B. Costa, C. M. Costa, S. Lanceros-méndez et al., Thermalmechanical behaviour of chitosancellulose derivative thermoreversible hydrogel films, Cellulose, vol.22, issue.3, pp.1911-1929, 2015.

N. M. Julkapli and H. M. Akil, Influence of a plasticizer on the mechanical properties of kenaf-filled chitosan bio-composites, Polymer-Plastics Technology and Engineering, vol.49, issue.9, pp.944-951, 2010.

E. A. El-hefian, E. S. Elgannoudi, A. Mainal, and A. H. Yahaya, Characterization of chitosan in acetic acid: Rheological and thermal studies, Turkish Journal of Chemistry, vol.34, issue.1, pp.47-56, 2010.

H. Desnos, A. Baudot, M. Teixeira, G. Louis, L. Commin et al., 1,2-propanediol aqueous solutions: Comparison with equilibrium, Thermochimica Acta [Internet], vol.667, issue.2, pp.183-191, 1984.

C. A. Angell, J. Shuppert, and J. C. Tucker, Anomalous properties of supercooled water. Heat capacity, expansivity, and proton magnetic resonance chemical shift from 0 to À38°C. The Journal of Physical Chemistry, 1973.

R. C. Weast, CRC Handbook of Chemistry and Physics, 1979.